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     Abstract—This paper presents a game theory application for 
analyzing power transaction in a deregulated energy market 
place such as poolco, where participants, especially, generating 
entities, maximize their net profit through optimal bidding 
strategies (i.e. bidding prices and bidding generations). In this 
paper by using game theory to simulate the decision making 
process for defining offered prices in a deregulated 
environment. The outcome of this study is to discourage unfair 
coalitions. A modified IEEE 30 bus system is used as a 
deregulated power pool to illustrate the main features of the 
proposed   method.   

Keywords- Power systemr operation Deregulation,game 
theory,poolco model,spot price. 

I.  INTRODUCTION  

Restructuring of electricity supply industry, worldwide, 
has brought the market competitiveness to the forefront, but 
the emergent electricity markets have a variety of new issues 
such as oligopolistic nature of the market, supplier’s strategic 
bidding, market power abuses, price-demand elasticity and 
so on. Theoretically, in a perfectly competitive market, 
suppliers should bid at, or very close to, their marginal 
production cost to maximize payoff. Also producers, who are 
small enough to affect market prices with their bids, are price 
takers, and their optimal strategy is to bid at the marginal 
cost of production [1]. However, the electricity markets are 
oligopolistic in practice, and power suppliers may seek to 
increase their profit by bidding a price higher than marginal 
production cost. Knowing their own costs, technical 
constraints and their anticipation of rival and market 
behavior, suppliers face the problem of constructing the best 
optimal bid. This is known as a strategic bidding problem. 

In this paper a methodology based on the non cooperative 
Game Theory [2–4] is used to analyze the economic 
behavior of the generating companies. The pool is modeled 
as a strategic game in which participants play against each 
other in to maximize their own benefits. The strategy that 
participants follow is the bid for pricing transactions. From 
the point of view of pool coordinators, the methodology 
presented in this paper is briefly given as: 

• Identify players of the game and their possible strategies 

• Identify possible coalitions among participants 

• Compute transactions and economic benefits associated 
with any coalition 

• Identify those coalitions which are likely to be formed 

• Encourage those coalitions that would maximize pool 
benefits 

Network constraints are considered in the formulation. A 
modified IEEE 30 bus system is used to demonstrate the 
proposed method. 

II. GAME THEORY 

The Game Theory can be defined as the study of 
mathematical models of conflict and cooperation between 
decision-makers. The Game Theory is a mathematical 
technique that analyzes situations in which two or more   
individuals make decisions that influence one another’s   
welfare. In theory, a game refers to any social situation, 
which involves two or more players. Two basic hypotheses 
exist that are made about the players: they are rational and 
intelligent. Each of these adjectives is employed in a 
technical sense. A player is rational if he makes consistent 
decisions with the achievement of his own objectives. It is 
supposed that the aim of each player is to maximize the 
expected value of its own payment, which is measured in 
some scale of utility. A player is intelligent if he knows 
everything that is relative to the game and can make 
inferences concerning the situations, which can take place.  

In Game theory two different approaches, one is the 
strategic or non cooperative approach. This requires a very 
detailed specification of the rules of the game, so that the 
strategies available to the players could be known in detail. 
The objective is to find an adequate group of strategies of 
equilibrium, which will be called the solution of the game. 
What is best for a player depends on what the other players 
think to do and this in turn depends on what they think the 
first player will do. These games are called strictly 
competitive or of zero-sum because any player’s gain is 
always exactly balanced with a loss corresponding to the 
other player. The solution of games of non zero-sum, those 
in which the gain of a player is not the same as the loss of 
others, was first formulated by John Nash [5].The application 
of the games with complete information is presented in [6]. 
The application of the games with incomplete information is 
presented in [7]. The other approach is the coalition or 
cooperative, which adopts a less rigid attitude [8-13] .The 
analysis, is made resorting to the criterion max–min (or 
characteristic function) to make decisions based on the use of 
pure strategies.  

III.  WHOLE SALE COMPETITIVE SPOT MARKET 

A.  The Mathematical Model 

 The problem of the active power ED of a thermal 
electric power system can be set a non-linear optimization 
problem, subject to the generation-load balance, the 
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technological characteristic of the generating units, and the 
capacity of the transmission system restrictions [14, 15]: 
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 Where  

Ci(PGi)  is production cost of the unit i 

      PGi is active power output of the unit i 

      PDj is active power load at bus j 

      M is number of generating units 

      N is number of system buses 

      Pk, Pk
Max are active power flow and its limit on line k;  

      PGi 
min PGi

max   are active power limits of the unit i 

      PL is transmission losses 

      TL is number of transmission line. 

 The Lagrange function is:  
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 Where  

λ  is Lagrange multiplier (generation-load balance) 

µi
Min µi

Max are Lagrange multipliers (technological 
characteristics of the generating units)  

σi is Lagrange multipliers (capacity of the transmission 
system).  

   The marginal costs of the thermal units are affected by the 
spatial and temporal quantification of the transmission 
losses, via the penalty factors of the corresponding 
generation bus, which are defined in the classic ED of active 
power by: 
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The necessary conditions of the first order of Karush–Khun–
Tucker [16] are:  
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The inclusion of active restrictions (LIN) into Eq. (4) is 
given by: 
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If the restrictions on the transmission capacity are not 
active, in the optimum, all thermal units operate at market 
price (λ of the system) within its technological limits. For the 
ones which generate their minimum (or maximum) power, 
they operate, respectively, at i-bus   price: 
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If the restrictions on the transmission capacity are active, 
in the optimum, all thermal units operate at the market price 
within its technological limits. For the ones, which generate 
their minimum (or maximum) power, they operate, 
respectively, at i-bus price: 
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B. The competitive game 

The ISO programs the operation with the objective of 
minimizing the costs of fuel. To do so, a unit commitment is 
run to determine the cheapest generating units. The decision 
of the generators to take part in the spot market to supply the 
load is reflected in the function of prices declared to the ISO. 
In this work, a non cooperative game is considered, where 
generating companies represent the players that try to 
maximize their profit using different pure strategies (the 
price that they declare for their production). Their benefits 
are given by: 
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Where Ώi is the set of generating units belonging to the 
utility k and ρj is the market price at bus j. The generating 
costs are represented by: 
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Where Ψ is the number of utilities, however, each 
generator knows only its own function of payment. The 
complete information is known by the ISO. Therefore, the 
economic behavior of the generators in the spot market can 
be analyzed by the ISO as a Static Game with Complete and 
Perfect Information.  

IV.  NUMERICAL RESULTS AND DISCUSSIONS 

The power system used in this paper is a modified IEEE 
30 bus system [17]. We assume that each player is a utility 
that can both supply its local and possibly sell power to the 
pool depending upon the market price. 

Before transactions are defined, each utility supplies its 
local load by applying an economic dispatch. The 
characteristics of generators and generation levels without 
transactions are listed in Table 1. In Table 1, the price for no 
transactions λ is the marginal cost evaluated in P(i). Based 

on prices in Table 1 utilities A and C sell power in the grand 
coalition while utility B buys power. 

Table 1: Generator Data 
 Bus Cost  coefficients 

a(i)      b(i)    c(i) 

Min   Max 

   [MW] 

   P(i) 

[MW) 

     Λ 

[$/Mwh] 

A 1 

2 

0      2       0.002 

0      1.75  0.0175 

0        80 

0        80 

23.54 

60.97 

2.94 

3.88 

B 13 

23 

0      3      0.025 

0      3      0.025 

0        40 

0        30 

37.00 

19.20 

4.85 

3.96 

C 22 

27 

0      1      0.0625 

0    3.25  0.00834 

0        50 

0        55 

21.59 

26.91 

3.69 

3.69 

 

Participants are able to change their prices by adjusting 
the values of ci. Using constrained economic dispatch, Pool 
benefits will be maximized when all participants trade power 
at marginal cost, m(i)=2c(i). As participants try to maximize 
their own benefits, they may either decrease their bids in 
order to sell more power or increase the price in order to earn 
more. Among the infinite set of feasible alternatives for each 
participant, we analyze the following three strategies: 

H - Trade power at 1.15 times the marginal cost, m(i) = 
2.3C(i). The participant’s strategy is to bid high. 

M - Trade power at marginal cost, m(i) = 2C(i).The 
participant’s strategy is to cooperate with the Pool. 

L - Trade power at 0.85 times the marginal cost, m(i) = 
1.7C(i). The participant’s strategy is to bid low. 

In the example system, there are three possible coalitions 
among participants plus the grand coalition. 
Correspondingly, there are four possible non cooperative 
games between coalitions and counter-coalitions. 

A. Transaction in a perfect competition 

Let’s assume first that no capacity limits are imposed on 
tie lines and participants are not facing any additional 
constraints (e.g., interruptible power from contracts, 
contingencies in local resources, etc.) in defining offered 
prices. We refer to this as a perfect competition, as 
participants cannot take advantage of external constraints. In 
the example, no participant has a biased control over the 
market price because of its size or location. 

 In Table 2, the payoff matrix of the non-cooperative 
game is shown for coalition S ={A,B} and its counter-
coalition Sc={C}.In this game, utilities A and B agree to join 
forces in order to  obtain higher benefits by combining 
strategies against utility C. The set of strategies available in 
each coalition is the product of the strategies for each 
participant in the coalition. Participants in the coalition have 
nine possible strategies: both bid at marginal costs (MM), 
both bid high (HH), both bid low (LL) in addition to (HM, 
HL, MH, ML, LH, and LM). An entry in the matrix is a pair 
of payoffs for coalition members and the counter-coalition, 
respectively. Each entry in the payoff matrix is computed 
using particular strategy (set of prices). The first value in the 



pair represents the sum of benefits in utilities A and B. The 
second value is the benefit obtained by utility C for the same 
combination of strategies. 

                     Table 2: Payoff matrix [$/h] 
{A -B}  {C}        H       M       L 

HH 20.30,0.27 20.34,0.24 20.38,0.20 

HM 20.38,0.42 20.41,0.38 20.45,0.32 

HL 19.97,0.65 19.98,0.59 19.99,0.56 

MH 20.56,0.18 20.60,0.16 20.63,0.14 

MM 20.62,0.30 20.65,0.28 20.69,0.23 

ML 20.17,0.50 20.19,0.46 20.21,0.39 

LH 20.46,0.10 20.49,0.09 20.53,0.07 

LM 20.48,0.19 20.52,0.17 20.56,0.14 

LL 19.95,0.34 19.98,0.32 20.01,0.27 

 

     While individual elements of the matrix are available to 
corresponding utilities, the entire matrix is accessible to the 
Pool coordinator. The characteristic function is an estimate 
of the best possible outcome in the worst situation for the 
coalition. In this example, the characteristic function of the 
coalition {A-B) is found by first locating the minimum 
benefit for coalitions in each row of Table 2(i.e.,$/h 
20.3,20.38…19.97) maximum of selected minimums: v(A-
B) = $/h 20.62. The chosen strategy is the max-min strategy. 
In this regard, utilities A and B bid at marginal costs because 
the bid offers the highest benefit when the other Pool 
participant (i.e. utility C) is minimizing the coalition’s 
benefits. A similar analysis is made for utility C with v(C) = 
$/h 0.1; in this case, the max-min strategy for utility C is to 
bid high.  

The characteristic function is a pessimistic estimate 
because it assumes that the counter coalition is playing to 
minimize the coalition’s benefit, when in fact the counter 
coalition is trying to maximize its own benefits. For instance, 
in Table 2 if utility C decides to play M instead of its max-
min strategy, the benefits of the coalition are higher than the 
characteristic function. Other criteria rather than the max-
min criterion could be used to simulate the decision process 
in participants. For instance, both the pessimism-optimism 
index criterion and the criterion based on the principle of 
insufficient reason would concentrate the decision in a 
weighted combination of the best and the worst states for the 
participants. The choice of the adequate decision criteria will 
depend upon the characteristics of the actual participants 
playing the game in the Pool. The strategy MM for coalition 
{A-B} in Table 2 is said to be a dominant strategy because 
the coalition chooses the same strategy for different 
circumstances (strategies of the counter coalition) that the 
player faces. From Table 2 we learn that the row MM 
corresponds to the maximum benefit that coalition {AB} 
obtains for each column; hence, no matter which strategy 
utility C chooses, the best strategy for coalition {A-B} is 

MM. Accordingly, the strategy H is a dominant strategy in 
utility C.  

If all bids are based on characteristic functions, the Pool 
will not reach the maximum system-wide benefit (i.e. $/h 
20.93). For this analysis, utilities A and B will bid at 
marginal costs while utility C will bid high. The game is in 
equilibrium at this point, because the strategies are the best 
response to the opponent’s strategy. The combination of 
dominant strategies (MM and H and the corresponding 
payoffs ($/h 20.62 and 0.30) are the dominant strategic 
equilibrium for the game. However, it is a rather non-stable 
equilibrium because there are other possible coalitions in 
which utilities may obtain higher benefits Table 3 gives the 
characteristic functions of coalitions in a perfect competition. 
The values for {A-B} and {C} are extracted from Table 2. 
All other entries are computed from the respective payoff 
matrices in the 4 possible games. 

The grand coalition (fourth row in Table 3) is optimum 
from the Pool’s perspective: load is supplied at minimum 
cost using available resources, and the maximum system-
wide benefits are obtained. This solution is the same as that 
of a traditional centralized dispatch with minimizing cost 
functions. 

Table 3: Payoff matrix [$/h] 
                 Coalition v(s) V(sc) 

{ A-C} 9.23 11.35 
{A-B} 20.62 0.1 
{B-C} 11.81 8.75 
{A-B-C} 20.93 - 
 

In this coalition, participants are obtaining $/h 9.11, 
11.54 and 0.28, respectively. A coalition of utilities that is 
dominated through some other coalition would never become 
permanently established. There would be a tendency for the 
existing coalition to break up and be replaced by one that 
gives its members a larger share. Based on Table 3, we can 
infer which coalitions are likely to form. Clearly, none of the 
participants alone are doing as good as the grand coalition. 
For instance, utility B will obtain at least $/h 11.35 by 
playing against the possible coalition of utilities A and C 
(first row in Table 3), however, in the grand coalition utility 
B will obtain $/h 11.54. Therefore utility B, acting rationally, 
will probably decide to cooperate with the Pool. It is 
observed also that there are no economic reasons for any of 
the participants to desert the grand coalition and join other 
coalitions for higher benefits. This is also the case in Table 2 
in which the game between {A-B} and {C} is in dominant 
strategy equilibrium; however, coalition {A-B} is a non 
stable coalition because its members are able to obtain higher 
benefits when joining the grand coalition. It is often claimed 
that the increasing pressure from competition in the energy 
market will help maximize the customers’ benefits in a pool. 
This is supported by the results obtained from the game 
theory. In general, bigger the game, greater the variety of 
coalitions. The grand coalition of the game will be 
dominating as long as the market is not giving any 
participants or group of participants a relative advantage over 
the remaining participants. Hence, in the case of a game 



played by numerous participants there will be a narrower 
margin for possible coalitions against system-wide benefits. 

B. Transactions in an imperfect competition 

Several factors can alter the perfect competition 
described in the previous section, including the economic 
pre-eminence of some of the participants, the mix of 
generation resources available to each participant, the 
geographic situation of the participants, etc. When the 
market is in imperfect competition, some participants may 
find that it is possible to obtain higher benefits by colluding 
with a group of participants. In this section, we analyze the 
role of network constraints in a deregulated power pool. We 
suppose the line between buses 27 and 28 (linking utilities A 
and C) is on outage. In the previous case, utility C was 
exporting power using this line. It is cheaper now for utility 
C to import power than to supply the load locally. In this 
case, utility A is selling more power and utility B is buying 
less power in comparison with the case when the line was 
available. The characteristic functions for this case 
corresponding to all feasible coalitions are shown in Table 4. 

Table 4: Payoff matrix [$/h] 
Coalition v(s) v(sc) 

{ A -C} 2.79 15.66 

{A -B}  18.38 0.19 

{B -C} 16.61 1.88 

{A -B-C} 18.70    - 

 

As line 27-28 is out, total generation costs are higher and 
the maximum system-wide benefit is $/h 18.70. In the grand 
coalition, participants obtain $/h 2.71, 15.83 and 0.16 
respectively. In Table 4, utility C is doing better alone (bid 
high in this case) than joining the grand coalition. 

 From the second row in Table 4 utility C is guaranteed 
to obtain at least $/h 0.19 when playing against the possible 
coalition of utilities A and B. This amount is higher than the 
benefit obtained by utility C in the grand coalition (i.e. 0.16); 
hence, there is an incentive for utility C to defect the grand 
coalition. The coalition of utilities B and C is also likely to 
form. The strategy for coalition {B-C} in the third row of 
Table 4 is to allow B to bid below the marginal cost and C to 
bid above the marginal cost. Utilities B and C may find out 
that as they coordinate their bids, they obtain at least $/h 
16.61 which is higher than that of the grand coalition. Hence, 
utilities B and C may decide to coordinate bids and share the 
extra benefits. In this case, utility A’s benefit and that of the 
system-wide are lower than those obtained in the grand 
coalition. If we compare Tables 3 and 4, we learn that when 
line 27-28 is available, utilities B and C are obtaining the 
best result in the grand coalition (i.e. $/h 11.82). Hence, it 
will be advantageous for utilities B and C if line 27-28 is 
unavailable. In this case, even when system-wide benefits are 
lower, the individual benefits are higher. The Pool 
coordinator may use the procedures described in this section 
to identify unanticipated problems and take adequate 
corrective measures. 

V. CONCLUSION 

In this paper, a case was presented when conditions for 
perfect conditions are altered. The network imposes 
additional constraints on the bids, and participants increase 
their benefits by coordinating bid strategies and sharing 
benefits. Some participants may even prefer a more 
constrained network as they can take advantage of the 
situation and obtain higher benefits. The analysis may be 
used by Pool coordinators to identify noncompetitive 
situations and to encourage pricing policies that lead to 
maximum system-wide benefits. Participants in deregulated 
power pools can also use the specific aspects of the proposed 
analyses for price definition and decision make processes.  
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