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Abstract—This paper presents a game theory application for
analyzing power transaction in a deregulated energynarket
place such as poolco, where participants, especigligenerating
entities, maximize their net profit through optimal bidding
strategies (i.e. bidding prices and bidding generans). In this
paper by using game theory to simulate the decisiomaking
process for defining offered prices in a deregulate
environment. The outcome of this study is to discaage unfair
coalitions. A modified IEEE 30 bus system is used aa
deregulated power pool to illustrate the main feattes of the
proposed method.
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. INTRODUCTION

Restructuring of electricity supply industry, woslidle,
has brought the market competitiveness to the rfoméf but
the emergent electricity markets have a varietyenf issues
such as oligopolistic nature of the market, supslistrategic
bidding, market power abuses, price-demand elfstarid
so on. Theoretically, in a perfectly competitive rked,
suppliers should bid at, or very close to, theirrgizl
production cost to maximize payoff. Also produceviep are
small enough to affect market prices with theirsbiare price
takers, and their optimal strategy is to bid at marginal
cost of production [1]. However, the electricity nkats are
oligopolistic in practice, and power suppliers nsgek to
increase their profit by bidding a price higherrthmaarginal
production cost. Knowing their own costs, technical
constraints and their anticipation of rival and kedr
behavior, suppliers face the problem of constrgctire best
optimal bid. This is known as a strategic biddimglypem.

In this paper a methodology based on the non catiper
Game Theory [2-4] is used to analyze the economic
behavior of the generating companies. The pooladeated
as a strategic game in which participaplsy against each
other in to maximize their own benefits. Thategythat
participants follow is the bid for pricing transiacts. From
the point of view of pool coordinators, the methiody
presented in this paper is briefly given as:

* Identify players of the game and their possiblateties
» ldentify possible coalitions among participants

» Compute transactions and economic benefits asedciat
with any coalition

» |dentify those coalitions which are likely to berfeed

e Encourage those coalitions that would maximize pool
benefits
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Network constraints are considered in the formaortatiA
modified IEEE 30 bus system is used to demonstize
proposed method.

. GAME THEORY

The Game Theory can be defined as the study of
mathematical models of conflict and cooperatiorwieen
decision-makers. The Game Theory is a mathematical
technique that analyzes situations in which twonmore
individuals make decisions that influence one amsh
welfare. In theory, a game refers to any socialasion,
which involves two or more players. Two basic hyeses
exist that are made about the players: they arenedtand
intelligent. Each of these adjectives is employed a
technical sense. A player is rational if he makesststent
decisions with the achievement of his own objestive is
supposed that the aim of each player is to maxintiee
expected value of its own payment, which is meakime
some scale of utility. A player is intelligent ifehknows
everything that is relative to the game and can emak
inferences concerning the situations, which caa td#ce.

In Game theory two different approaches, one is the
strategic or non cooperative approach. This requirerery
detailed specification of the rules of the game thst the
strategies available to the players could be knowdetail.
The objective is to find an adequate group of stiats of
equilibrium, which will be called the solution dfi¢ game.
What is best for a player depends on what the qilesrers
think to do and this in turn depends on what thegkt the
first player will do. These games are called drict
competitive or of zero-sum because any player's gai
always exactly balanced with a loss correspondmdhe
other player. The solution of games of non zero;sinose
in which the gain of a player is not the same asltiss of
others, was first formulated by John Nash [5]. Tpeliaation
of the games with complete information is preseriteff].
The application of the games with incomplete infation is
presented in [7]. The other approach is the coalitor
cooperative, which adopts a less rigid attitudel38-.The
analysis, is made resorting to the criterion max-rfor
characteristic function) to make decisions basethernuse of
pure strategies.

.  WHOLE SALE COMPETITIVESPOTMARKET

A. The Mathematical Model

The problem of the active power ED of a thermal
electric power system can be set a non-linear dgdiion
problem, subject to the generation-load balances th
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capacity of the transmission system restrictiods 1b5]:
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The marginal costs of the thermal units arecééié by the o, 20 k O LIN )

spatial and temporal quantification of the transiois
losses, via the penalty factors of the correspandin
generation bus, which are defined in the classicEBRctive
power by:

If the restrictions on the transmission capacity aot
active, in the optimum, all thermal units operatemarket
price Q of the system) within its technological limits.rRbe
ones which generate their minimum (or maximum) powe
they operate, respectively,idbus price:
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If the restrictions on the transmission capacity ative,
in the optimum, all thermal units operate at thekaaprice
within its technological limits. For the ones, whigenerate

their minimum (or maximum) power, they operate,
respectively, ai-bus price:
dC oP,
o =Ful—— Zak : (1)
dPGi kOLIN aPGi

B. The competitive game

The ISO programs the operation with the objectife o
minimizing the costs of fuel. To do so, a unit commnent is
run to determine the cheapest generating units.déaésion
of the generators to take part in the spot markstpply the
load is reflected in the function of prices deadthre the 1SO.

In this work, a non cooperative game is considevetere
generating companies represent the players thattary
maximize their profit using different pure straegi(the
price that they declare for their production). Thegnefits
are given by:

B, = Y {p, xPG -|a, +b,PG, +¢,PG?|

jmioh

Where(); is the set of generating units belonging to the
utility k and p; is the market price at bys The generating
costs are represented by:

C(PG)=a+bPG+cPG?($/h)
The payoff function of the player k is:

Y
u NS - R
i=1

Where W is the number of utilities, however, each
generator knows only its own function of paymenheT
complete information is known by the ISO. Therefdte
economic behavior of the generators in the spoketaran
be analyzed by the ISO as a Static Game with Cdmplad
Perfect Information.

IV. NUMERICAL RESULTSAND DISCUSSIONS

The power system used in this paper is a modifiteEl
30 bus system [17]. We assume that each playewutsitg
that can both supply its local and possibly seilvg@oto the
pool depending upon the market price.

Before transactions are defined, each utility siggpits
local load by applying an economic dispatch. The
characteristics of generators and generation lewglsout
transactions are listed in Table 1. In Table 1,dtee for no
transactions. is the marginal cost evaluated in P(i). Based

on prices in Table 1 utilities A and C sell powetthe grand
coalition while utility B buys power.

Table 1: Generator Data

Bus | Cost coefficient | Min  Max P(i) A
a@i) b() c() [MW] [MW) | [$/Mwh]
A 0 2 000z |O 80 23.5¢ | 2.9¢
2 0 1.750.0175 0 80 | 60.97 | 3.88
B{13 |0 3 0.02 0 A 37.0C | 4.8
23 |0 3 0025 |0 30 |19.20 | 3.96
Cci22 |0 1 0065 |0 5( 21.5¢ | 3.6¢
27 |0 3.25 0.00834 0 55 | 26.91 | 3.69

Participants are able to change their prices bystdg

the values of jc Using constrained economic dispatch, Pool
benefits will be maximized when all participantsde power

at marginal cost, m(i)=2c(i). Agarticipants try to maximize
their own benefits, they may either decrease their bids in
order to sell more power or increase the pricerdeoto earn
more. Among the infinite set of feasible alternasifor each
participant, we analyze the following three straeg

H - Trade power at 1.15 times the marginal cost) m(
2.3C(i). The participant’s strategy isha high.

M - Trade power at marginal cost, m(i) = 2C(i).The
participant’s strategy is tooperatewith the Pool.

L - Trade power at 0.85 times the marginal cost) m(
1.7C(i). The participant’s strategy ishia low.

In the example system, there are three possibléiona
among  participants plus the grand coalition.
Correspondingly, there are four possible non caatper
games between coalitions and counter-coalitions.

A. Transaction in a perfect competition

Let's assume first that no capacity limits are iisgab on
tie lines and participants are not facing any aolait
constraints (e.g., interruptible power from consac
contingencies in local resources, etc.) in definoftgred
prices. We refer to this as a perfect competjtiais
participants cannot take advantage of externaltcings. In
the example, no participant has a biased contrel die
market price because of its size or location.

In Table 2, the payoff matrix of the non-cooperati
game is shown for coalitios ={A,B} and its counter-
coalition S={C}.In this game, utilities Aand B agree to join
forces in order to obtain higher benefits by camg
strategies against utility C. The set of strategiesilable in
each coalition is the product of the strategies dach
participant in the coalition. Participants in ttealition have
nine possible strategies: both bid at marginal sc¢stM),
both bid high (HH), both bid low (LL) in additior t(HM,
HL, MH, ML, LH, and LM). An entry in the matrix ia pair
of payoffs for coalition members and the countaalition,
respectively. Each entry in the payoff matrix ismputed
using particular strategy (set of prices). Thet fislmdue in the



pair represents the sum of benefits in utilitiesusd B. The
second value is the benefit obtained by utilityo€the same
combination of strategies.

Table Payoff matrix [$/h]

(A-B} {C} H M L
HH 20.30,0.2 20.34,0.2 20.38,0.2
HM 20.38,0.4 20.41,0.3 20.45,0.3
HL 19.97,0.6 19.98,0.5 19.99,0.5
MH 20.56,0.1 20.60,0.1 20.63,0.1
MM 20.62,0.3 20.65,0.2 20.69,0.2
ML 20.17,0.5 20.19,0.4 20.21,0.3
LH 20.46,0.1 20.49,0.0' 20.53,0.0
LM 20.48,0.1 20.52,0.1 20.56,0.1
LL 19.95,0.3 19.98,0.3 20.01,0.2

While individual elements of the matrix areadable to
corresponding utilities, the entire matrix is aciiele to the
Pool coordinator. The characteristic functisnan estimate
of the best possible outcome in the worst situatammthe
coalition. In this example, the characteristic fimt of the
coalition {A-B) is found by first locating the mimum
benefit for coalitions in each row of Table 2(ié,
20.3,20.38...19.97) maximum of selected minimums:-v(A
B) = $/h 20.62. The chosen strategy is the maxstrategy
In this regard, utilities A and B bid at marginalsts because
the bid offers the highest benefit when the otheolP
participant (i.e. utility C) is minimizing the cd@bn’s
benefits. A similar analysis is made for utilityv@th v(C) =
$/h 0.1; in this case, the max-min strategy folitytC is to
bid high.

The characteristic function is a pessimistic estima
because it assumes that the counter coalitionaging to
minimize the coalition’s benefit, when in fact teeunter
coalition is trying to maximize its own benefitorinstance,
in Table 2 if utility C decides to play M insteaélits max-
min strategy, the benefits of the coalition arehkigthan the
characteristic function. Other criteria rather ththe max-
min criterion could be used to simulate the decigoocess
in participants. For instance, both the pessimigtirasm
index criterion and the criterion based on the qipie of
insufficient reason would concentrate the decisiona
weighted combination of the best and the worsesttdr the
participants. The choice of the adequate decigiberie will
depend upon the characteristics of the actual qigatits
playing the game in the Pool. The strategy MM foalition
{A-B} in Table 2 is said to be a dominastrategy because
the coalition chooses the same strategy for diftere
circumstances (strategies of the counter coalitibia) the
player faces. From Table 2 we learn that the row MM
corresponds to the maximum benefit that coalitigkBY
obtains for each column; hence, no matter whichtesy
utility C chooses, the best strategy for coalitignB} is

MM. Accordingly, the strategy H is a dominant st@t in
utility C.

If all bids are based on characteristic functighs, Pool
will not reach the maximum system-wide benefit. (¢
20.93). For this analysis, utilities A and B willidbat
marginal costs while utility C will bid high. Theame is in
equilibrium at this point, because the strategresthe best
response to the opponent’'s strategy. The combimabio
dominant strategies (MM and H and the corresponding
payoffs ($/h 20.62 and 0.30) are the dominant egjiat
equilibrium for the game. However, it is a rather non-stable
equilibrium because there are other possible ¢maditin
which utilities may obtain higher benefits Tablgi8es the
characteristic functions of coalitions in a perfeainpetition.
The values for {A-B} and {C} are extracted from Tlab2.

All other entries are computed from the respecpegoff
matrices in the 4 possible games.

The grand coalition (fourth row in Table 3) is optim
from the Pool’s perspective: load is supplied ahimum
cost using available resources, and the maximurtersys
wide benefits are obtained. This solution is thmeas that
of a traditional centralized dispatch with mininnigi cost
functions.

Table 3:Payoff matrix [$/h]

Coalition| v(s) V(sc)
{ A-C} D.23 11.35
{A-B} 0.62 0.1
{B-C} 11.81 8.75
{A-B-C} P0.93 -

In this coalition, participants are obtaining $/hl B
11.54 and 0.28, respectively. A coalition of utld that is
dominated through some other coalition would néesome
permanently established. There would be a tendfarcthe
existing coalition to break up and be replaced hg that
gives its members a larger share. Based on Table Zan
infer which coalitions are likely to form. Clearlgpne of the
participants alone are doing as good as the graatition.
For instance, utility B will obtain at least $/h.3% by
playing against the possible coalition of utilitidsand C
(first row in Table 3), however, in the grand cbah utility
B will obtain $/h 11.54. Therefore utility B, acgimationally,
will probably decide to cooperate with the Pool. idt
observed also that there are no economic reasoranjoof
the participants to desert the grand coalition gl other
coalitions for higher benefits. This is also thee@ Table 2
in which the game between {A-B} and {C} is in donaint
strategy equilibrium; however, coalition {A-B} is aon
stable coalition because its members are ablettrohigher
benefits when joining the grand coalition. It isenf claimed
that the increasing pressure from competition & e¢hergy
market will help maximize the customers’ benefitsipool.
This is supported by the results obtained from game
theory. In general, bigger the game, greater théetyaof
coalitions. The grand coalition of the game will be
dominating as long as the market is not giving any
participants or group of participants a relativeattage over
the remaining participants. Hence, in the case afame



played by numerous participants there will be aroveer
margin for possible coalitions against system-videefits.

B. Transactions in an imperfect competition

Several factors can alter the perfect competition
described in the previous section, including theneenic
pre-eminence of some othe participants, the mix of
generation resources available to each participsme,
geographic situation of the participants, etc. Whee
market is in imperfect competitipisome participants may
find that it is possible to obtain higher benebiscolluding
with a group of participants. In this section, wealgze the
role of network constraints in a deregulated popasl. We
suppose the line between buses 27 an@i2idng utilities A
and C) is on outage. In the previous case, ut{lityvas
exporting power using this line. It is cheaper rfowutility
C to import power than to supply the load locally.this
case, utility A is selling more power and utility i buying
less power in comparison with the case when the Was
available. The characteristic functions for thissea
corresponding to all feasible coalitions are shawhable 4.

Table 4:Payoff matrix [$/h]
Coalitior v(s) v(sc
{A-C} 2.7¢ 15.6¢
{A-B} 18.3¢ 0.1¢
{B-C} 16.61 1.8¢
{A-B-C} 18.7( -

As line 27-28 is out, total generation costs aghér and
the maximum system-wide benefit is $/h 18.70. im ¢ghand
coalition, participants obtain $/h 2.71, 15.83 a@d6
respectively. In Table 4, utility C is doing bettdbne (bid
high in this case) than joining the grand coalition

From the second row in Table 4 utility C is guaead
to obtain at least $/h 0.19 when playing againstpgbssible
coalition of utilities A and B. This amount is highthan the
benefit obtained by utility C in the grand coalitii.e. 0.16);
hence, there is an incentive for utility C to deféwe grand
coalition. The coalition of utilities B and C issal likely to
form. The strategy for coalition {B-C} in the thircbw of
Table 4 is to allow B to bid below the marginaltcasd C to
bid above the marginal cost. Utilities B and C nfiagd out
that as they coordinate their bids, they obtaideast $/h
16.61 which is higher than that of the grand cmalitHence,
utilities B and C may decide to coordinate bids ahdre the
extra benefits. In this case, utility A’s benefitdathat of the
system-wide are lower than those obtained in threndr
coalition. If we compare Tables 3 and 4, we lehat tvhen
line 27-28 is available, utilities B and C are dhitag the
best result in the grand coalition (i.e. $/h 11.82¢nce, it
will be advantageous for utilities B and C if li2¥-28 is
unavailable. In this case, even when system-wateefits are
lower, the individual benefits are higher. The Pool
coordinator may use the procedures described $nstgtion
to identify unanticipated problems and take adexuat
corrective measures.

V. CONCLUSION

In this paper, a case was presented when conditions
perfect conditions are altered. The network imposes
additional constraints on the bids, and participantrease
their benefits by coordinating bid strategies aimring
benefits. Some participants may even prefer a more
constrained network as they can take advantagehef t
situation and obtain higher benefits. The analys&y be
used by Pool coordinators to identify noncompetitiv
situations and to encourage pricing policies thesdl to
maximum system-wide benefits. Participants in deletgd
power pools can also use the specific aspectsegirtbposed
analyses for price definition and decision makeesses.
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